On the Game Server Network Selection with Delay
and Delay Variation Constraints

Yuh-Rong Chen, Sridhar Radhakrishnan, Sudarshan K. Dhall

School of Computer Science
University of Oklahoma
{yrchern, sridhar, sdhall} @ou.edu

Abstract—Recent advances in multimedia software and hard-
ware technologies and the availability of high-speed Internet
service have been instrumental for growth in the online gaming
industry. Multiple servers distributed across the network are
commonly used to provide the desired quality-of-service (QoS)
for the network game in order to achieve a higher quality-
of-experience (QoE) to the players (clients). Each player in
this distributed multi-player gaming environment connects to a
particular server and it distributes each of the actions to all
other players through the servers they are connected to. We
imagine the server network to be an overlay network, wherein
the latency on a link between two servers is the latency of the
Internet path connecting them. We assume that we are given an
overlay network of servers with link latencies and a set of players
each with a different latency to each of the servers. Now our
goal is to develop algorithms that perform the following actions
in such a way that delay related QoS constraints are satisfied:
(a) choose a subnetwork of the server network (server network
selection) and (b) assign each player to a server in the subnetwork
(client-assignment). More specifically, the QoS constraints that
we address in this paper are a bound on the maximum delay in
propagating a player’s move to all other players (delay bound)
and a bound on the maximum difference in the arrival times
of a player’s move at all other players (delay-variation bound).
We have provided polynomial-time heuristics to determine a
minimal cardinality server network and the corresponding client-
assignment that satisfy both delay bound and that minimize
delay-variation, if such a solution exists. We have considered
cases in which the server network follows two communication
models: client-server (CS) and peer-to-peer (P2P). Our extensive
empirical studies indicate that our heuristic uses significantly
less run-time in achieving the tightest delay variation for a given
end-to-end delay bound while choosing a minimal number of
servers.

I. INTRODUCTION

Online games have been popular with the availability of
affordable high-speed Internet service and related software and
hardware technologies. The pervasive availability of game con-
soles with Internet capability such as Xbox, PlayStation 3 and
corresponding online multiplayer gaming services like XBox
Live and PlayStation Network have enabled a wide-range of
individuals with none or little experience in computing to
interact with others in the Networked Virtual Environments
(NVEs). While many of the currently available games support
a small number of players (6-32 in many cases), most of them
are unable to scale [3], [4]. It has been clearly established that

978-1-4244-8953-4/11/$26.00 © 2011 IEEE

Suleyman Karabuk
School of Industrial Engineering
University of Oklahoma
karabuk@ou.edu

this lack of scalability of many of the games is directly related
to network latency [6].

Researches have been done on traffic analysis and modeling
[23] and user behaviors under various network quality [4]
to help us understand the network requirements of different
types of online games. There are also researches on proposed
architectures for huge virtual environments or online games
[15], [13]. It has been shown that well-provisioned networks
with good server selection algorithms could be used to solve
the latency problem [14], [24].

Quality-of-Experience (QoE) for online game playing is not
only affected by the latencies, but also by fairness. Cross-
Language Battlegroups that players from different regions of
the world are selected to compete in the same game session
have been implemented in the game World of Warcraft [25].
In the implementation, each instance/session of the game is
handled by a single server and hence each player has a
different latency to the server. The results in different levels
of responsiveness for the players in the same game session,
which has been shown to be unfair in competitive online games
[1]. While event synchronization protocols proposed in [8]
[10] are used to maintain consistent games state are important
for achieving fairness, they cannot be used to solve the delay
variation issue. There are solutions such as finding alternative
paths or packet buffering [2].

The problems considered in this paper are closely related to
the various multicast tree construction problems that have been
considered in the literature [21], [22], [2]. The construction
of a delay and delay-variation bounded multicasting tree
(DVBMT) was first discussed and proven to be NP-complete
in [22].

The main contribution of our research compared to the
works on multicasting tree construction is that we consider
both the configuration of the server network and the set of
clients that are to be connected to the server(s), the latter of
which adds an extra dimension of complexity.

The DVBMT problem is briefly defined as follows. Given
a network G = (S, E), a source node s € S and a set of
destinations C' = {¢1, ¢, - - ¢, } C S. The objective is to find
a set of paths to all the destinations that forms a multicast tree
rooted at s such that max(d(s, ¢;) —d(s, ¢;)) (delay variation)
is minimum for ¢;, ¢; € C, where d(s, ¢;) denotes the delay
from s to ¢; for the path used. Minimizing delay-variation will

improve fairness in game playing — ideally, a player close to
the game server should not be able to make the moves or have
a ability to know the game state any faster than other players
farther away from the server.

For our problem at hand, we consider a server network
whose servers are nodes in a network and link delays are the
latencies of the path connecting those pair of servers nodes.
In addition to the server network, we are given a set of client
nodes (players of the game) with delay to each of the servers.
We have designed a server subnetwork construction algorithms
for either the client/server or the peer-to-peer communication
model together with appropriate client to sever assignment
(client assignment) in such a way that the delay related QoS
requirements of the online game are met.

Minimizing the number of servers used is also one of our
goals of this paper. If less number of servers are used for a
single game session, it’s more likely that the network of servers
could accommodate more game sessions. Hence, we prefer
assignments with fewest number of servers if the delay bound
is satisfied. Additionally our algorithms attempt to improve
the delay variation to address fairness issue, while satisfying
the delay constraint.

Banik et al [2] have provided heuristic based on k-shortest
path to determine client to serve path that tries to satisfy bound
established for both client to server communication delay and
a bound for delay variation. The difference between this work
and the work in [2] are as follows:

o Banik et. al [2] considers a network containing nodes,
some of which are clients and a node is selected as a
server. In our paper, the nodes of the network are all
routers, clients outside of the network can connect to any
of the routers with each connection having a specified
delay. Our goal here is to find to which nodes the
clients should connect to in order to solve the problem at
hand. Additionally, we have to determine the appropriate
router to which the server should be connected to. If we
assume that the delay from a client to any router is the
shortest path delay in the network under consideration,
then the work in [2] can be used to solve our problem.
The network we have considered is a well-provisioned
network and the path from clients to the routers in the
well-provisioned network need not use the routers in this
network. Hence we have considered a more general case.

o Additionally, we have addressed our problem in the
context of (a) the servers could be deployed at any
location of the network and (b) we have also considered
the peer-to-peer architecture.

The paper is organized as follows. In Section II, we discuss
the system model and problem definition/formulation. Our pro-
posed algorithms are described in Section III. The performance
of proposed algorithms is given in Section IV. Conclusions are
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Types of Communication

A node in a network is a computing system that participates
in communication and computational activities relating to the
game. In the following discussion, a client refers to a computer
with the software installed for playing the game that renders
and presents the game states to the user [14].

The network architecture for an online game dictates the
mechanisms for maintaining the game states. Generally net-
work architecture could be classified into two types according
to the communication model: client-server (centralized) and
peer-to-peer.

Consider the scenario in which all clients must obtain
the state of the game. In a client-server architecture, all
events generated by the clients are sent to the central server
first. Then the central server computes the new state of the
game and sends necessary updates to all the clients. In this
architecture, we define the latency to update an event to be the
maximum time difference between generation of an event and
propagation of the resulting game state to all the clients. Most
First Person Shooting (FPS) games or Massively Multiplayer
Online Role Playing Games (MORPGs) such as Quake 4 and
World of Warcraft use this approach. In this architecture, the
nodes and links involved form a tree with the central server
as the root.

In a peer-to-peer approach, the users play the game without
a central server. All the messages are exchanged between
the participants directly and the new state of the game is
computed at each client. We define the latency as the largest
communication delay between any pair of clients. Real-time
strategy (RTS) games such as StarCraft adopt this approach.

Both architectures require some synchronization mechanism
to restore the order of the events. However, the peer-to-peer
approach is less scalable due to the direct message exchange
and requires more sophisticated synchronization methods to
maintain a persistent game state due to the lack of a central
control [9].

There are other architectures. The multiserver architecture
is a variation of the client-server architecture. It is usually
implemented in MMORPGs with each server being responsi-
ble for a portion (e.g., a region) of the game [11]. Mirrored
server architecture is a hybrid of client-server architecture and
peer-to-peer architecture [7], [10]. Multiple mirrored servers
are deployed geographically instead of a single server. A client
could pick one of the mirrored servers to join the game. These
mirrored servers cooperate and run a synchronization protocol
to maintain a consistent game state.

B. Server Network

We borrow the terminologies and notations from [14], [24]
to describe Server Selection Problems, which are also used in
our previous research [5].

Server network has been modeled as an overlay network
[17] [18] [19] on top of the existing Internet or as a private
network dedicated to the game [14]. We assume that the server

A @

Internet

Fig. 1. An example of a game session with the set of servers S =
{A,B,C, D, E} and the set of clients Cg = {a,b, c,d, e}. The bold lines

represent the well-provisioned network between the servers and the dotted
lines represent Internet links between the clients and the servers.

TABLE I
LATENCIES BETWEEN CLIENTS AND SERVERS IN FIG. 1

client a a a a a
server A B C D E
distance | 41 | 55 | 39 | 70 | 65
client b b b b b
server A B C D E
distance | 52 | 32 | 43 | 25 | 48
client c c c c c
server A B C D E
distance | 51 | 37 | 32 | 72 | 48
client d d d d e
server A B C D E
distance | 52 | 64 | 60 | 39 | 48
client e e e e e
server A B C D E
distance | 68 | 37 | 56 | 55 | 63

network is a well-provisioned network capable of providing
low latencies on its links. In practice, the servers could be
hosted at the Internet Service Providers in different regions
to achieve this requirement. The major advantage of such
a network is that the game provider will be able to use
custom protocols and routing algorithms on this network.
We use an undirected weighted graph G = (S, F,w) to
represent this network, where S = {si1,...,s,} is the set
of n servers distributed geographically, F is the set of links
between servers and w is the link latency function over E.
An example is shown in Fig. 1 with S = {A, B,C, D, E},
E = {(A,B),(A,FE),(B,C),(B,D),(C,D),(D,E)} and
the number are the link latencies between servers (w).

C. Clients

The clients are the computers used by players involved in
the same game session. The number of clients in a single
game session is typically between 4 and 80; examples include
StarCraft II and World of Warcraft raid. Large number of
game sessions are in execution at the same time and the
length of each game session varies from the games. A typical
World of Warcraft raid could take 3 to 4 hours with minor
changes to the membership, on the other hand, a typical
StarCraft II game lasts from 30 minutes to 1 hours. We assume
the length of a game session is long enough so the users
could benefit from the pre-arranged server communications.

— Assignment

Fig. 2. An example of an assignment based on Fig. 1. The numbers denote
the latencies of links.

We use C' = {c1, ..., ¢ } to denote the set of m clients (also
distributed geographically) participating in the same game
instance or session.

Accessing the Servers: We assume that there exists an
Internet link between each server s; and client c; pair with
the latency d(c;,s;j). Let B = {(c;, sj)|c; € Cg,5; € S} be
the set containing all these links (note: |B| = m x n). In
addition, disjoint vertex sets C', S and with edge set B could
be visualized as a complete bipartite graph. In the example in
Fig.1,B ={(z,Y)|z € {a,b,c,d,e},Y € {A,B,C, D, E}}.
The latencies are given in Table I.

In the client-server model, one of the server nodes will be
chosen as the central server while other servers act like routers.
All the clients can connect (a) directly to the central server
through an Internet path, or (b) to some other server through
an Internet path which in turn connects to the central server
through a path on the well-provisioned network. Because of
the presence of the well-provisioned network, it is possible
that latency of (a) can be more than that of (b). An example
is shown in Fig. 2 with B be the central server. The latency
for client @ is 110 (55 x 2) in case (a) but reduced to 100
((4149) x 2) in case (b).

D. Assignments

In order to participate in a game instance, each client is
assigned to one of the servers, which are called contact servers
[14], [24]. Contact servers are responsible for forwarding
the packets to their destinations. This defines a one-to-one
mapping from the clients to the servers is called server
allocation in [14]. We use the term assignment in this paper.
We use A to denote an assignment for some game session.
Clearly, A C B. Note that an assignment is a semi-matching
[12], [16].

Given a desired latency bound, our goal is to find the sub-
networks that not only obey this delay bound, but also keep the
number of server used as small as possible in order to provide
more simultaneous game sessions. For example, a possible
assignment A = {(a, A), (b, D), (¢,B),(d,D),(e,B)} C B
of Fig. 1 is shown in Fig. 2. Assuming that B is the central
server and the delay bound is 110. Three servers are used if
we use the assignment shown by solid lines. But we could
achieve a better assignment with 2 servers by assigning a to
B without violating the bound.

Fig. 3. Another example of an assignment based on Fig. 1. The numbers
denote the latencies of links.

E. Delays (Latencies)

Let the set of contact servers be S’, The latencies in a game
session for both client-server and peer-to-peer architectures are
defined as follows.

a. The client-server architecture is generally represented as
a tree 7, with root r being the central server. The delay
(or latency) of this tree D.4(7}) is the maximum delay
between any two clients ¢;, ¢; in the tree going through
the root . We also need to consider the delay from a
client to itself. Let client ¢; be assigned to server s, , the
latency for the client-server architecture is D.s(T}) =
2 x maz(d(c;, s¢;) + d(se¢,,7)). Since the tree could be
derived from the centralized server r and the assignment
A, we use D s(A,) to denote the delay. In the previous
example (Fig. 2), if r = B, D.s(A,) = 2 x (d(d, D) +
d(D, B)) = 102.

b. The peer-to-peer architecture utilizes a subnetwork
H = (S', E’',w) containing contact servers, intermediate
servers and the clients. The latency of this subnetwork
D,2p(H) is the diameter of H which can be denoted
as Dpop(H) = max(d(c;, s¢;) + d(Se,, 5¢;) +d(cj, 5¢c;))-
Similarly, we use Dy2,(A) to denote the delay. In the
same example, Dy2,(A) = 101 which is the latency
between a and d using the assignment A and the path
(a,A,B,D,d).

F. Delay Variation

The concept from [22] is used define delay variation for
the Client-Server architecture, and we extend it for the Peer-
to-Peer architecture.

a. For the client-server architecture, delay variation is the
difference of the smallest latency and the largest latency
among all clients: V.4(T,) = max|2 x (d(c, Se;) +
d(se;, 1)) —2x (d(cj, 5¢;) +d(sc,,7))| where ¢;, ¢; € Cy
and s.,,s.; € S'. Using the assignment in Fig. 3 with
root 7 = D, the largest RTT delay is from e to D (132)
while the smallest is from b to D (50). Delay variation
is 82.

b. For the peer-to-peer architecture, we define de-
lay variation as the difference of the smallest and
largest latencies between two clients: Vpo,(H) =
max |(d(clv SC«;) + d(SCi7 Scj) + d(cjv SCj)) - (d(CP’ Scp) +
d(8c,,5c,) + d(cq, 5c,))| Where ¢;,cj,cp,cq € Cy and
SciySc;sScys Se, € S'. In the same example (Fig. 3) with
assignment A, the largest latency between two clients is

114 (a and e) and the smallest is 64 (b and d, or a and
¢). Delay variation is 114 — 64 = 50.

G. Problem Formulations

We formulated Server Selection Problems with Delay Con-
straints (SPD) for both client-server and peer-to-peer archi-
tectures using the notations from Section II. Given the system
model and a delay constraint p, the goal of SPD is to find an
assignment A such that the number of servers used is minimal,
and

a. Client-Server (SPD-CS): the latency of the tree T' rooted
at induced by the assignment A is D.s(4,) < p.

b. Peer-to-Peer (SPD-P2P): the latency of the subgraph I
induced by the assignment A: Dyo,(A) < p.

This class of problems is proven to be NP-hard by the
reduction from the set-covering problem [14].

We further extend this by reducing the delay variation for
a given assignment. Server Selection Problems with Delay
Constraints and Delay Variation Reduction (SPDVR). It is
defined as follows:

Given an assignment A satisfying the delay constraint p,
the goal of SPDVR is to find a a new assignment A’ using
the same set of servers in A such that the delay is less than
1 and the delay variation is minimal.

Note that since A’ C A, the number of servers used in the
new network is no more than the original solution (A).

III. ALGORITHMS

We discussed and evaluated the algorithms for SPD in our
previous research [5]. In this section, we will first briefly
introduce the ideas of our heuristic SPD algorithms in Sec-
tion III-A and present SPDVR algorithms for both client-
server (SPDVR-CS) and peer-to-peer architectures (SPDVR-
P2P) in Section III-B and III-C, respectively. Note that all the
algorithms run in polynomial time.

A. Algorithms for SPD

We briefly introduce our SPD algorithms and make compar-
ison with ZIZO algorithm from [14]. Although ZIZO algorithm
is for the mirrored server architecture, it could be used for
SPD-P2P since it’s a variation of the peer-to-peer model.

e Algorithm Matching: This algorithm is used to find the
minimum latency I' in a given network for the SPD-CS
problems. The the number of the servers used are not
considered. It works as follows. For each server s; € .S,
we build a shortest path tree rooted at r = s;. Then we
assign each client ¢; to a server s; such that d(c;, s;) +
d(sj,r) is minimum. After all the clients are assigned
as above, we calculate the latency of current assignment.
After testing all possible trees, we choose the one with
the minimum latency (I'). All-pairs shortest path can be
done in O(n?) time. For each s;, the total time to find the
assignment describe above is O(nm), results in O(n?m)
for n distinct trees. The overall complexity is O(n?m)
with m > n.

. ©

Fig. 4. Observation from an SPD-CS solution

e Algorithm SPDCS-H: This heuristic algorithm for SPD-
CS takes a greedy approach by keeping the number of
servers selected to a minimal. It begins with a server r (as
the root of the tree T'). Then a set of clients are assigned
to this tree 7' if the delay constraint is not violated. If
all the clients are assigned to the nodes in 7', then we
are done. Otherwise, we will choose a server s that is a
neighbor of T' (a neighbor to some node in the tree) such
that the number of unassigned clients can be assigned to
it without violating the delay constraint is maximum. The
clients will be assigned to this server and the s is added
to T'. Repeat until all clients are assigned. The complexity
of this algorithm is O(n?m) with m > n. The number of
servers involved is no more than in Algorithm Matching
if the delay constraint is greater than or equal to I'.

We use Fig. 4 to show that the desired peer-to-peer ar-
chitecture can be constructed using the tree from SPD-CS
algorithms.

Suppose we have an assignment A with root s for an SPD-
CS problem with the delay bound . Let s1 # sz be any
two contact servers in A and ¢; # c2 be two clients assigned
to s1, 2, respectively. Then d(cy, s1) + d(s1,) + d(ca, s2) +
d(s2,s) < u. If the communication is done in a peer-to-peer
fashion, then d(c1,c2) = d(cq,s1) + d(s1,s2) + d(ca, s2).
There are two cases, s lies on one of the shortest paths
between s1 and so or not. In either case, d(c1, s1)+d(s1, $2)+
d(ca,s2) < d(c1,81) + d(s1,8) + d(ca,s2) + d(s2,8) <
Hence a SPD-CS solution could be used for SPD-P2P with
the delay bound pu.

Based on this observation, we can convert the tree con-
structed using SPD algorithms to a network for peer-to-peer
communication. The delay of such subnetwork is also bound
by the delay of the tree.

e Algorithm SPDP2P-H: This algorithm works as follows.
First we use a SPD algorithm to find an assignment as
the solution to the SPD-P2P problem. Then for each pair
of contact servers s;, s; in the solution, the intermediate
servers along their shortest path are added to the solution.
The complexity of the SPDCS-H algorithm is O(n?m).
Adding finding the intermediate servers can be done in
O(n?) time. The overall complexity of this algorithm is
O(n?m) with m > n.

e Zoom-In Zoom-Out: The ZIZO algorithm in [14] first
allocates the clients to the nearest servers and migrates
them toward the core server s* (that minimizes the
longest shortest distance to all the clients) to reduce
the number of servers used. Example shown in Fig 5

©
B

1

TN “'7
o) |
3<l] Teels 13
Seee-teeooniTT TTIT
14

17
(a) (b)

Fig. 5. (a) An example shows that ZIZO fails to find a solution with p1 = 18
where A, B, C are servers and 1, 2, 3 are clients. (b) A shortest path tree
rooted at C has the depth of 9 which gives the delay bound px = 18. Our
our heuristic will find a solution with the delay 16 if we set the delay bound
parameter to 18.

illustrates the existence of an assignment with the delay
bound i = 16. However ZIZO fails to find a solution in
this example for ¢ = 18. The initial assignment gives the
minimal delay of 19 and the ZIZO algorithm stops. Our
algorithm finds the solution with delay bound 16.

B. Algorithm for SPDVR-CS

The goal of SPDVR-CS problems is similar to DVBMT
(Delay and delay Variation-Bound Multicast Tree) problems
[21], [22]. We borrow Algorithm Chains from [2] as part of
Algorithm 1 to solve SPDVR-CS problems.

To find a solution with the minimal delay variation from the
given assignment A, we first find the set of servers used S’
(assume |S’| = k). Next we find the shortest distances from
root 7 to all other nodes in S’. Each client now could use
one of the servers in S’ as its contact server. A list of tuples
are created: L = {(c;, s;,d;,:)|c; € C,s; € S’} and d; ; is the
latency from client c; to r using contact server s;. (¢, cj, djyl-)
will not be included if d;; > p.

Now we can apply Algorithm Chain to find an assignment
with minimum delay variation. First L is sorted by d; ; in non-
decreasing order. Let h,t be two elements in L where h < t.
We define a chain be a set of consecutive elements in L such
that all the clients are covered and use T'(h,t) to denote it
where the h is the head and ¢ is the tail. Define the delay
variation of the chain as D(h,t) is d(t) — d(h), where d(h)
and d(t) are the latencies of h and ¢, respectively. The size of
a chain must be greater than or equal to |C| (the number of
the clients).

Now, for each element s in L as the head, scan toward the
end of the list until each of the clients is visited at least once.
All possible minimal delay variation chains can be found and
the one with the smallest delay variation will be our solution.
The execution of the algorithm on the example in Fig. 1 is
demonstrated below.

Assume 1 = 139. The set of servers used in assignment A
is 8" = {A, B,C, D}. Then we compute the distance from the
central server D to all servers in S”: d(A, D) = 21,d(B, D) =
12,d(C, D) = 10. Next is to construct the list L and sort L
by dj; in non-descending order and apply Algorithm Chains.
If dj; > &, the delay bound is violated and the tuple will not
be added to L.

The sorted list L can be constructed from Fig. 1 and 1.
Fig. 6 shows the idea of constructing L. Starting with the
centralized server D and find the shortest path to servers used

TABLE II
SORTED LIST L

id 1 2 3 4 6 7 8 9
7 b c b c e d a a b
j D|C|B|B|B|D|CT]A C
d; 12532323737 [39]39]41]43
id | 10 | 11 | 12 | 13 | 14 [15 | 16 | 17 | 18
7 c b d e a e d d e
j A A A|lD|B|C|C]| B]| A
d; | 51] 52 [52] 55 |55]| 56|60 | 64| 68

0
A\

3
o
()

e
/)‘4%

Fig. 6. The temporary structure for constructing L.

(A, B,C, D). The numbers on the links denote the distances
between two servers. Then we consider the delays between
clients a,b,c,d,e and servers A, B,C, D. By adding them
together, we can find the delays from a client to the centralized
server D through a possible contact server. For example, the
distance between client b to server D through contact server
C is 43 + 10 = 53. The set of tuples {(c;,s;,d;;)|c; €
C,s; € {A,B,C,D}} is created and the sorted. L is shown
in Table II.

For each element in L, we attempt to find a chain if it exists.
For example, a chain starting with the first element (id = 1)
is denoted as Hy = {1,2,3,4,5,6,7} covers all the clients.
The delay variation of Hy is D(1,7) = 39— 25 = 14. A chain
starts with A is minimal if it is no longer a chain if we remove
the last element in the chain. We listed the delay variation of
all possible minimal chains (Table III) for the graph in Fig. 6.
From the table, the chain 10,11,12 13,14 has the smallest
delay variation and is chosen as our solution.

The algorithm (SPDVRCS-H) is shown in Algorithm 1. The
set of servers used can be found in O(m) time (line 1). In line
2-9, creating and sorting the list L cost O(mn) time. Line 11-

TABLE III
ALL POSSIBLE CHAINS FROM L
Chain d(h) | d(t) | D(h,t)
1,2,3,4,5,6,7 25 39 14
2,3,4,5,6,7 32 39 7
3,4,5,6,7 32 39 7
4,5,6,7,8,9 37 43 6
5,6,7,8,9,10 37 51 14
6,7,8,9,10,11,12,13 39 55 16
,8,9,10,11,12,13 39 55 16
8,9,10,11,12,13 41 55 14
9,10,11,12,13,14 43 55 12
10,11,12,13,14 51 55 4

17 is the main part of Algorithm Chains. For each element
in L, the scan costs at most O(mn) of time. In the worst
case, it takes O(m?n?) of time. The overall time complexity
of Algorithm 1 is O(m?n?).

Input: G = (S, E,w), C, B, root r, assignment A,
delay bound p
Output: dv, new assignment A’

1 Create the set of servers involved in A as S’;

2 Create an empty list L;

3 foreach ¢; € C,s; € S’ pair do

4 Compute the D, s, = dc(ci,55) + ds(s5,7);
5 if D¢, s, < then

6 Add the tuple (c;, 55, De,s;) to L;

7 end

8 end

9 Sort L by D, s, in non-descending order;

10 dv = o0;

-
—

foreach T; € L do
Scan from 7; to the right until all ¢; are visited,
let the last one be Tj, = (Cm, Sn, De,, s,)

"
N

13 if D, s, — D¢, s; <0 then

14 dv=De,, s, — D¢, s;3

15 Create a new assignment A’ from Tj;
16 end

17 end

18 return dv, A’
Algorithm 1: Heuristic Algorithm for SPDVR-CS

C. Algorithm for SPDVR-P2P

The delay variation for the Peer-to-Peer architecture is the
difference between the maximum and minimum delay between
any two clients. To reduce the delay variation, we could either
try to decrease the maximum delay or increase the minimum
delay by modifying current assignment. However, it cannot
be guaranteed that the delay variation is reduced since all the
latencies have to be recalculated after the reassignment. We
will demonstrate this using the example in Fig 3.

As we have shown in Section II-F, the delay variation for
the Peer-to-Peer architecture is 50. One way to reduce the
delay variation smaller is to make the smallest latency (64
between b and d) larger. In this case, we could reassign client
d to server A and the latency between client b and client d
becomes 98. However, the latencies between client d and ¢, a,
e are also changed to 98, 93, 125 respectively. The smallest
latency becomes 74 which is the latency between b and c.
The delay variation becomes 125 — 74 = 51 which becomes
larger. This example shows that reducing the delay variation in
the Peer-to-Peer architecture is more difficult than the Client-
Server architecture.

The heuristic algorithm (Algorithm 2, SPDVRP2P-H) we
proposed is based on client reassignment and works as follows.
For a given assignment A, we find the set of servers involved
in the assignment S’. A list L sorted by d; ; which contains
the set of tuples (¢;, ¢, d; ;) is created.

Input: G = (S, E,w), C, B, assignment A, delay
bound p
Output: h, d, dv, T’
1 Create the set of servers involved in A as S
2 L = ConstructL(G,C, B, A);
3 done = false;
4 while !done do
5 Let ¢;, ¢4, d be the two clients and the delay in
the first element in L;
6 (A, L,reassigned) =
Reassign(c;, G,C,B,u, A, S", L);

7 if reassigned == false then
8 foreach s € S do
9 (A, L, reassigned) =

Reassign(cj, G,C, B, n, A, S, L);
10 end

1 end

12 if reassigned == false then
13 done = true;

14 end

15 end

16 done = false;

17 while !done do

18 Let ¢;, ¢4, d be the two clients and the delay in
the last element in L;

19 (A, L,reassigned) =
Reassign(c;,G,C, B, u, A, S, L);

20 if reassigned == false then
21 foreach s; € S do
2 (A, L, reassigned) =

Reassign(cj, G,C, B, n, A, S, L);
23 end

24 end

25 if reassigned == false then
26 done = true;

27 end

28 end

29 return d, (L), A
Algorithm 2: Heuristic Algorithm for SPDVR-P2P

Then the algorithm goes through two phases. The delay
variation of L is the difference between the delays of the
first and the last elements. In the first phase, the goal is to
reduce the delay variation by increasing the smallest delay in
the list L. This is done by reassigning one of the two clients
at the beginning of L to servers in S’ by calling Procedure
Reassign(). A new list with minimal delay variation is returned
from the procedure if it exists. If a new assignment is found,
A and L are replaced by A’ and L respecively and repeat
this phase with the new assignment. If no suitable assignment
is found, then we call Procedure Reassign() to find a new
assignment by reassigning the second client. Repeat this until
no more reassignment can be found for both clients at the
front of L.

Input: G, C, B, u, A
Output: L
1 Construct an empty list L;
2 foreach c;, c; pair(c; # c;) do
Compute the delay D, ., under current
assignment A;
add the tuple (c;, ¢j, d(c;, ¢;) to L;
end
Sort L by d(¢;, ¢;) in non-descending order;
return L
Procedure ConstructL (G, C, B, A)

w

N A

Input: ¢;, G, C, B, u, A, L
Output: rooted tree 7', root r, assignment A, latency
d
foreach s, € S’ do
Create assignment A’ by reassigning ¢; to sg;
L' = ConstructL(G,C, B, A’);
if d,(L') < dy(L) and d(L") < mu then
Reassign ¢; to s; (update A);
L=1L"
reassitgned = true;
end
end
o return A, L, reassigned

Procedure Reassign(c;,G,C,B,u, A, S, L)

o X NN R W N -

o

Next phase is similar but instead of reassigning the clients at
the beginning of L, the clients at the end of L are reassigned to
reduce the largest delay. We use the previous example (Fig. 1
and Table I) to demonstrate this algorithm.

In the example, S’ = {A, B,C,D}. First we construct
the sorted list L (Table IV) which represents the latencies
between all pairs of clients. The current delay variation is
114(a,e) — 64(b,d) = 50. Now we start the first phase with
client b which is currently assigned to server D. The elements
(a,b), (b,c), (b,d), (b,e) in L are affected after reassigning
b to A,B or C, and the new latency values are shown in
Table V. We can see that if we reassign client b to server C,
the delay variation is improved and also the smallest. Hence
client b is reassigned to server C' and L is updated. This is
repeated until the delay variation cannot be reduced. Then the
algorithm enters the second phase to reduce the delay variation
from the end of the list. The algorithm stops and returns
the current assignment. For this example, the assignment

TABLE IV
INITIAL SORTED LIST FOR SPDVR EXAMPLE

Client Pair | b,d | b,c | a,b | a,c | ¢, d
Latency 64 74 87 87 88
Client Pair | b,e | a,d | c,e | d,e
Latency 91 101 | 101 | 105

a,e

114

TABLE V
RESULTS AFTER REASSIGN CLIENT b

New Latencies for Client Pairs
New Server for b | a,b | b,c | b,d b, e
A 93 98 | 112 125
B 82 69 83 96
C 101 | 88 92 99

(a, B), (b,C), (¢, B), (d, D), (e,C) with delay variation 18 is
found.

SPDVRP2P-H is shown in Algorithm 2. The set of used
servers S’ and L constructed in lines 1-2 can be done in
O(m?) if all-pair shortest path between servers are given. A
single iteration in the first loop (lines 4-15) is dominated by
Procedure Reassign() which can be done in O(nm?). The
while loop in lines 17-28 takes O(nm?) time for a single
iteration. Define the delay variation of the given assignment
as D,,. These two loops are executed at most D, times which
could not be determined before L was constructed (D, is
also bound by p). Hence the algorithm has pseudo-polynomial
complexity O(nm?). In the simulations, the first loop (phase)
is only executed a few times (< 10) and the second phase
even fewer.

IV. PERFORMANCE EVALUATION

Experiments are designed to evaluate the performance of our
algorithms. First a set of networks with 20, 25 and 30 servers
and 30, 50,80,100 and 120 clients are randomly generated.
For each combination, there are 30 different networks with
450 different networks in total. The latencies on the network of
servers are reduced by 30% to represent the well-provisioned
network. All graphs shown in this paper are for networks
contains 25 servers. The graphs for other networks are similar
but omitted due to the space limitation.

A. Delay Bounds

Most of the algorithms take a parameter d which is the
desired delay bound for the assignments. As we mentioned
earlier, the values of delay bound depend on the type of the
game. However, it must be achievable on a given network
and we use Algorithm Matching to find this value I', which
is the latency of the shortest shortest-path tree. Then we
multiply T with a factor f(> 1.0) as the delay bound p.
In the experiments, we scaled I' to 500 ms and we choose
1.0,1.1,1.2,1.3,1.4 and 1.5 for f in our experiments.

B. General Experiment Method

We evaluated the performance of the algorithms based on
delay variation reduced after applying our algorithms. The
procedure follows. For each different input (network), we first
find the best possible value of I'. After I' for a graph is
found, different SPD algorithms are used to find the initial
assignments satisfying p. Repeat with different delay bounds
() as described earlier. The evaluation of SPD algorithms is
shown in Section IV-C. Then we apply our delay variation

TABLE VI
ALGORITHMS COMPARED IN SPD-CS EXPERIMENT

Notation Algorithm Complexity
alg-m Algorithm Matching O(n?m)
spdcs-h Algorithm SPDCS-H O(n?m)
k-best Best result utilizing k servers O(n* - n?m)

& Algorithm Matching
(k depends on results of
Algorithm SPDCS-H)

o0 627 6.23_ 507
397 _$20 -~ -+
600 =
)
£ 550 397
3 ~$20 27§23 57
$ 500 J1.03 1367 ,15.50 1633 16.70
©
—
450 —>—bound
* - alg-m
400 - =-spdcs-h
-o- k-best
0 50 100 150
of Clients

Fig. 7. Latencies on different algorithms for 25 servers, f = 1.3. The figure
also shows the average number of servers used in the solution.

reduction algorithm to reduce the delay variation. The delay
variation of the initial and final assignments are compared.

C. Evaluation of SPD Algorithms

To evaluate our results in terms of the number of servers
used in the feasible solution, we generated all subnetworks of
size k for the given network where k is given by SPDCS-H.
For all subnetworks of size k that admits a feasible solution,
we chose one that has the least delay and delay variation
values. We call this k-best algorithm.

1) SPD-CS Algorithms: We compared the results from
different SPD-CS algorithms in Table VI. The results show that
all the algorithms are able to find solutions within given delay
bound. Algorithm SPDCS-H found assignments with fewer
servers than Algorithm Matching (Fig 7). We also observed
that as the delay bound increases, the number of servers used
decreases.

2) SPD-P2P Algorithms: The same method and input are
used to evaluate SPD-P2P algorithms in Table VII. Our heuris-
tic algorithms are able to find solutions that satisfy the delay
bound (Fig. 8). But occasionally, ZIZO can not find a solution.
On the number of servers used, k-best gives best results (fewest
number of servers) while ZIZO is the worst (similar to alg-
m(CS)). Algorithm SPDP2P-H falls approximately half way
between these two algorithms (Fig. 9).

TABLE VII
ALGORITHMS COMPARED IN SPD-P2P EXPERIMENT

Notation ~ Algorithm Complexity

alg-mp Algorithm Matching O(n?m)
(converted to P2P)

spdp2p-h Algorithm SPDP2P-H O(n?m)

zizo Zoom-in Zoom-out O(nm3)

k-best Best result utilizing k servers O(n* - n2m)

& Algorithm SPDP2P-H
(k depends on results of
Algorithm SPDP2P-H)

650 [e e
.83 9.47 -gg
.77 60 _ 403 3
600 477 o5 30 -&
&m »014233 15.23 4543
T 550 Jas3a™ <4023 g5
B
£ 500 J1.03 1367 1550 16.33 16.70
T
- - &-bound
450 + alg-mp
o spdp2p-h
400 -o-k-best
4 zizo
350
0 50 100 150

of Clients

Fig. 8. Latencies on different algorithms for 25 servers, f = 1.3. The figure
also shows the average number of servers used in the solution

20
- #-alg-mp
o spdp2p-h
—0- k-best /;5"’”
15 < zizo Lo N
3 e
3 AR
4 b’
210 a a .
o)
»
Il o
=
5 o o
R
o -
0
0 50 100 150
of Clients

Fig. 9. Number of used servers on different algorithms(f = 1.3)

D. Evaluation of SPDVR-CS Algorithm

We compare the improvement on delay variation after Al-
gorithm 1 (SPDVRCS-H) is applied. Algorithm 1 significantly
reduces the delay variation on different graphs. The result of
the networks with 25 servers f = 1.3 is shown in Fig 10 while
other configurations give similar results.

We also compared the change on latencies after applying
Algorithm 1. Interestingly, we found that Algorithm 1 does not
only reduce the delay variation, but it also reduces the latencies
by a small amount (Fig 11). Similar results are observed for
other input data sets.

E. Evaluation of SPDVR-P2P Algorithm

Similar comparisons are done for Algorithm 2. The results
show that Algorithm 2 could reduce the delay variation
(Fig 12). The results for other configurations are similar.

On the latencies, the latencies are also reduced as shown
in Fig 13 in most cases. In some of the cases (f = 1.4, f =
1.5), the latencies increase by a small amount after applying
Algorithm 2, but they are still below the delay bound (Fig 14).

IS a
a =}
S S}
*
*

IS
S
S}

Delay Variation (ms)
W w
s &
3 g
\
>

N
a
S

+ - Before
—o- After

150

200
[0 100
of Clients

Fig. 10. Delay variations before and after applying Algorithms 1 (25 servers,
f=13)

650 i e i il
600
2
= 550
>
3
2
2
3 500
+ * *
R S
PR S -
450 - »-Bound
* - Before
—0— After
400
0 50 100 150
of Clients

Fig. 11. Delay before and after applying Algorithms 1 (25 servers, f = 1.3)

Delay Variation (ms)
W w S »~ o
] & 3 & S
3 g 3 2 3
o
7
|
I
<
*

N
a
S

+ - Before
—o- After

150

200
0

50 100
of Clients

Fig. 12. Delay variations before and after applying Algorithms 2 (25 servers,
f=13)

650 e s
600
550
2 500
E
> 450
3
5]
& 400
— * * * * *
350
e it 3
300 o - »-Bound
250 # - Before
—o- After
200
0 50 100 150
of Clients

Fig. 13. Delay before and after applying Algorithms 2 (25 servers, f = 1.3)

700 | i it bl 2
600
N
£ 500
>
3
2
2
5 400
* * B e
-0
300 - - &-Bound
* Before
—0— After
200
0 150

50 100
of Clients.
Fig. 14. Delay before and after applying Algorithms 2 (25 servers, f = 1.4).

We observed that the latencies increase by a small amount in some cases (100
clients).

V. CONCLUSIONS

User experience in online games can be improved by
reducing user to server, and server to server connection la-
tencies. This goal can be achieved by building a network of
geographically distributed servers and connecting them with
well-provisioned links.

In this paper, we first review server selection algorithms
with delay constraints which also minimize the number of
servers used. Next, we extend the problem by considering
fairness in the online game server selection problems (delay
variation). We propose two algorithms to reduce the delay
variation: one for the client-server architecture and the other
for the peer-to-peer architecture. Experimental results show
that both heuristics effectively reduce the delay variation by
reassigning the clients to different servers without increasing
the number of servers used in the given assignment. Unexpect-
edly, we observed that both algorithms also reduce the average
latencies by a small amount.

Although we use multiplayer online games as an example
in this research, the applications are not limited to this par-
ticular problem domain. For example, networked collaborative
applications such as distributed online music concerts, mobile
gaming or audio/video conferences could benefit from proper
server assignments. Even without using a well-provisioned
network, server selection algorithms can help us find better
ways for routing in overlay networks.

In practice, these algorithms are easy to implement due to
the low computational overhead. Although the servers could
be placed at the ISPs to achieve the network requirements,
the choice of locations to deploy the server nodes could be
a major challenge. Additionally, the choice of a appropriate
overlay server network topology have be be studied in delay.
This topology should take into account the various game and
client requirements.

Another issue that needs to be solved is the change of group
membership; in this case we would have to reallocate some
of the clients to different servers. A handshaking protocol
is necessary for this procedure. Our ongoing research topics
are server selection problem for multiple groups and load
balancing. We also plan to perform real-world experiments
on PlanetLab [20] to evaluate our algorithms.

REFERENCES

[1] G. Armitage, “An experimental estimation of latency sensitivity in
multiplayer quake 3,” in Networks, 2003. ICON2003. The 11th IEEE
International Conference on, 2003.

[2] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan, “Multicast routing
with delay and delay variation constraints for collaborative applications
on overlay networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3,
pp. 421431, 2007.

[3] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “An empirical evalua-
tion of tcp performance in online games,” in ACE ’06: Proceedings of the
2006 ACM SIGCHI international conference on Advances in computer
entertainment technology. New York, NY, USA: ACM, 2006, p. 5.

[4] K.-T.Chen, P. Huang, and C.-L. Lei, “Effect of network quality on player
departure behavior in online games,” IEEE Trans. Parallel Distrib. Syst.,
vol. 20, no. 5, pp. 593-606, 2009.

[5]

[6]
[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Y.-R. Chen, S. Radhakrishnan, S. Dhall, and S. Karabuk, “Server
selection with delay constraints for online games,” in /EEE Globecom
2010 Workshop on Multimedia Communications and Services (MCS
2010), Miami, Florida, USA, 2010.

M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40-45, 2006.

E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game
server system,” in University of Michigan, 2001, p. 01.

E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin, “An efficient synchro-
nization mechanism for mirrored game architectures,” Multimedia Tools
Appl., vol. 23, no. 1, pp. 7-30, 2004.

S. Ferretti, “A synchronization protocol for supporting peer-to-peer mul-
tiplayer online games in overlay networks,” in DEBS ’08: Proceedings of
the second international conference on Distributed event-based systems.
New York, NY, USA: ACM, 2008, pp. 83-94.

S. Ferretti and M. Roccetti, “Fast delivery of game events with an
optimistic synchronization mechanism in massive multiplayer online
games,” in ACE ’05: Proceedings of the 2005 ACM SIGCHI Interna-
tional Conference on Advances in computer entertainment technology.
New York, NY, USA: ACM, 2005, pp. 405-412.

F. Glinka, A. Ploss, S. Gorlatch, and J. Miiller-Iden, “High-level devel-
opment of multiserver online games,” Int. J. Comput. Games Technol.,
vol. 2008, pp. 1-16, 2008.

N. Harvey, R. Ladner, L. Lovasz, and T. Tamir, “Semi-matchings for
bipartite graphs and load balancing,” in Proc. 8th WADS, 2003, pp.
294-306.

S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: a scalable peer-to-peer
network for virtual environments,” Network, IEEE, vol. 20, no. 4, pp.
22-31, August 2006.

K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selection for large
scale interactive online games,” in NOSSDAV ’04: Proceedings of the
14th international workshop on Network and operating systems support
for digital audio and video. New York, NY, USA: ACM, 2004, pp.
152-157.

E. Léty, T. Turletti, and F. Baccelli, “Score: a scalable communication
protocol for large-scale virtual environments,” IEEE/ACM Trans. Netw.,
vol. 12, no. 2, pp. 247-260, 2004.

C. P. Low, “An approximation algorithm for the load-balanced semi-
matching problem in weighted bipartite graphs,” Inf. Process. Lett., vol.
100, no. 4, pp. 154-161, 2006.

M. Mauve, S. Fischer, and J. Widmer, “A generic proxy system for
networked computer games,” in NetGames '02: Proceedings of the Ist
workshop on Network and system support for games. New York, NY,
USA: ACM, 2002, pp. 25-28.

J. Mller, S. Fischer, S. Gorlatch, and M. Mauve, “A Proxy Server-
Network for Real-time Computer Games,” in In Proc. of Euro-Par 2004,
Aug. 2004.

C. Nguyen, F. Safaei, and P. Boustead, “A distributed server architecture
for providing immersive audio communication to massively multiplayer
online games,” in Networks, 2004. (ICON 2004). Proceedings. 12th
IEEE International Conference on, vol. 1, 16-19 2004, pp. 170 — 176
vol.1.

PlanetLab. https://www.planet-lab.org:443/.

G. N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay
and delay variation constraints,” IEEE Journal on Selected Areas in
Communications, vol. 15, pp. 346-356, 1995.

G. Rouskas and I. Baldine, “Multicast routing with end-to-end delay and
delay variation constraints,” Selected Areas in Communications, IEEE
Journal on, vol. 15, no. 3, pp. 346-356, Apr 1997.

P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis and modeling
for world of warcraft,” in Communications, 2007. ICC ’07. IEEE
International Conference on, 2007, pp. 1612-1617.

S. D. Webb and S. Soh, “Adaptive client to mirrored-server assignment
for massively multiplayer online games,” in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, ser. Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
6818, Jan. 2008.

World of Warcraft - Cross-Language Battlegroups
http://forums.wow-europe.com/thread.html?topicld=9446244539.

FAQ.

