
Server Selection with Delay Constraints for Online
Games

Yuh-Rong Chen, Sridhar Radhakrishnan, Sudarshan K. Dhall
School of Computer Science

University of Oklahoma
{yrchern, sridhar, sdhall}@ou.edu

Suleyman Karabuk
School of Industrial Engineering

University of Oklahoma
karabuk@ou.edu

Abstract—Improving latency is the key to a successful online
game-playing experience. With the use of multiple servers along
with a well-provisioned network it is possible to reduce the
latency. Given a network of servers, game clients, and a desired
delay bound, we have designed algorithms to determine the
subnetwork of servers whose cardinality is minimal. We have
considered the cases wherein the subnetwork architecture is a
client-server and a peer-to-peer. We have also provided exhaustive
empirical evaluations of our algorithms and compared their
performance with the optimum. Experimental results show that
our polynomial-time algorithms could find good solutions quickly.

I. I NTRODUCTION

Networked Virtual Environments (NVEs) such as Massively
Multiplayer Online Role Playing Games (MMORPG) wherein
a number of users interact with each other through the Internet
have become commonplaces. While the number of users is
growing, technological challenges arise with real-time con-
straint being one of them. Realtimeness is one of the important
factors related to game-playing experience. For example, when
a player performs an action in a game, the action must take
effect within a short period of time, otherwise users may stop
playing and leave the game [1], [2].

Researches have been done on traffic analysis and modeling
[19] and user behaviors under different network quality [2].
There are also researches on proposed architectures for huge
virtual environments or online games [11], [9], [15]. Event
synchronization protocols which are important to maintaina
consistent game are proposed in [4] [6].

In this paper, we present several heuristic server selec-
tion algorithms (subnetwork construction) utilizing the well-
provisioned server networks that take into consideration
Client-Server architecture (Algorithm 1, 2), Peer-to-Peer ar-
chitecture (Algorithm 3) and the delay constraints. This type
of problems are a type ofsteiner tree problems with additional
constraints and their extension. Our algorithm for finding a
peer-to-peer subnetwork with a desired delay bound guarantees
to find such networks for a large classes of these bounds. We
show that the thatZoom-in Zoom-out (ZIZO) technique by
Lee et. al [10] can sometimes fail to find such subnetworks
for delay bound for some of these classes of bounds.

The paper is organized as follows. In Section II, we dis-
cuss the system model and problem formulations. Section III

describes our proposed server selection algorithms. The per-
formance of proposed algorithms is given in Section IV.
Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

A. Types of Communication

A node in a network is a computing system that participates
in communication and computational activities relating tothe
game. In the following discussion, we refer to aclient as a
computer with the software installed for playing the game that
renders and presents the game states to the user [10].

The network architecture for the online game dictates the
mechanisms to maintain the game states. Generally it could
be classified into two types according to the communication
models:client-server (centralized) andpeer-to-peer.

Consider the scenario in which all clients must obtain the
state of the game. In a client-server architecture, all events
generated by the clients are sent to a central server first. Then
the central server computes the new state of the game and
sends necessary updates to the clients. In this architecture, we
define the latency to update an event to be the maximum time
difference between generation of an event and propagation of
the resulting game state to all the clients. Most FPS games or
MMORPGs such as Quake 4 [17] and World of Warcraft [21]
use this approach. Note that in this architecture, the nodesand
links involved form a tree with the central server as the root.

In a peer-to-peer approach, the users play the gamewithout
a central server. All the messages are exchanged between the
participants directly and the new state of the game is computed
at each client. Hence we define the latency as the largest
communication delay between each pair of clients. Strategy
games such as StarCraft [18] use this approach.

Both architectures require some synchronization mechanism
to restore the order of the events. However, a peer-to-peer
approach is less-scalable due to the direct message exchange
and requires more sophisticated synchronization methods to
maintain a persistent game state due to the lack of a central
control [5].

There are other architectures. Multiserver architecture is
a variation of the client-server architecture. It is usually
implemented in MMORPG with each server being responsible
for a portion (e.g., a region) of the game [7]. Mirrored server
architecture is a hybrid architecture consisting of client-server

architecture and peer-to-peer architecture [3] [4] [6]. Multiple
mirrored servers are deployed geographically instead of a
single server. A client could pick one of the mirrored servers
to join the game. These mirrored servers cooperate and run a
synchronization protocol to maintain a consistent game state.

We mainly focus on the basic architectures (client-server
and peer-to-peer) since our concern is the realtimeness. The
measurement of realtimeness for other architectures are the
same as the two basic architectures.

B. System Model and Terminologies

We borrow the terminologies and notations from [10], [20]
to describe Server Selection Problems (SSP).

 Internet

B

A

E

D

C

d

b

e
c

a

 Well−provisioned

Fig. 1. An example of a game session with the set of serversS =
{A, B, C, D, E} and the set of clientsCg = {a, b, c, d, e}. The bold lines
represent the well-provisioned network between the servers and the dotted
lines represent Internet links between the clients and the servers.

1) Server Network: Server network has been modeled as an
overlay network [13] [14] [15] on the existing Internet or asa
private network dedicated to the game [10]. We use the second
assumption and assume that our server network is a well-
provisioned network capable of providing low latencies on its
links. We use an undirected weighted graphG = (S, E, w) to
denote this network. The major advantage of such network is
that the game provider will be able to use custom protocols
and routing algorithms on the network.

Let S = {s1, ..., sn} be the set ofn servers. A central
server refers to an entity that is capable of collectively
maintaining a persistent state of an instance [10]. We also
assume that a server also has the capability to route the
packets to their destinations which could be another server
or a client. The servers are distributed geographically and
connected through a set of well-provisioned linksE with
the edge latency functionw : E → ℜ+. An example
is shown in Fig. 1 withS = {A, B, C, D, E} and E =
{(A, B), (A, E), (B, C), (B, D), (C, D), (D, E)}.

In practice, each of the server could be formed by a set of
computers and routers to achieve the functionality and located
at different ISPs for the network requirements.

2) Clients: The clients are formed by the set of players
involved in the same game session. The number of clients in a
single game session is typically between25 and80; examples
include World of Warcraft raid or battleground [21]. Large
number of game sessions are in execution at the same time
and the length of each game session depends on the type of the
game. A typical World of Warcraft raid could take3 to 4 hours
with minor changes to the membership, on the other hand, a
typical battleground lasts30 minutes to2 hours. We assume

the length of a game session is long enough so the users could
take benefit of the pre-arranged server communications. We
use Cg = {c1, ..., cm} to denote the set ofm clients (also
distributed geographically) participating in the same game
sessiong. In the same example,Cg = {a, b, c, d, e}.

3) Accessing the Servers: We assume that there exists an
Internet link (which has higher latency w.r.t.E) between each
pair of serversi and clientcj with the latencydc(ci, sj). Let
B = {(ci, sj)|ci ∈ Cg, sj ∈ S} be the set containing all the
links between the clients and the servers. Note that in a game
session withn servers andm clients,|B| = m×n. In addition,
the setsS, C andB could be visualized as a complete bipartite
graph with disjoint vertex setsC of users,S of possible contact
servers andB are the edges between the two disjoint vertex
sets. In Fig. 1 example,B = {(x, Y)|x ∈ {a, b, c, d, e}, Y ∈
{A, B, C, D, E}}.

In the client-server model, one of the server nodes will be
chosen as the central server while other servers as routers.The
servers are connected by a well-provisioned network. Now all
the clients can connect (a) directly to the central server through
an Internet path, or (b) to some other sever (again through
an Internet path) which in turn connects to the central server
through a path on the well-provisioned network. Because of
the presence of the well-provisioned network, it is possible that
latency from (a) can be more than that of (b). An example is
shown in Fig. 2. LetB be the central server, the latency for
client a is 55 in case (a). It is reduced to50 in case (b).

e

B

A
D

C

d

b

c

a8

25

39

55 41

37
37

9
12

10
7

10

E
Assignment

Fig. 2. An example of an assignment in Fig. 1. The numbers denote the
latencies of links.

4) Assignments: In order to participate in a game session,
each clientci is connected to one of the serverssj which
are calledcontact servers in [10], [20]. Contact servers are
responsible for forwarding the packets to their destinations.
This defines a one-to-one mapping from the clients to the
servers and it is calledserver allocation in [10]. We call it an
assignment in this paper. We useAg to denote the assignment
for some game sessiong. Clearly,Ag ⊂ B. An assignment is
a semi-matching [8], [12]. A possible assignment is shown in
Fig. 2 for the example in Fig. 1.

Given a desired latency bound, our goals will be to design
algorithms that not only obeys this delay bound, but also keeps
the number of server used as small as possible. Hence it is not
necessary to find the assignment with minimum latencies. By
assigning the clients cleverly, an assignment with less number
of servers could be found. For example, in Fig. 2, assume
that B is the central server and the delay bound is55. Three
server are used if we use the assignment shown by solid lines.
But we could achieve a better assignment with2 servers by

assigninga to B without violating the bound.
5) Latencies: Let the set of contact servers beS′, the

latencies for client-server and peer-to-peer architectures are
defined below.

a. The client-server architecture is generally represented as
a treeT with root r being the central server and which
denoted asTr. The delay of this treeDcs(Tr) is the
maximum delay between any two clientsci, cj in the tree
going through the rootr. We also need to consider the
delay from a client to itself. Let clientci be assigned to
serversci

, the latency for the client-server architecture is
Dcs(Ts) = 2 × max(dc(ci, sci

) + ds(sci
, r)).

b. The peer-to-peer architecture utilizes a subnetwork
H = (S′, E′, w) containing contact servers, intermediate
servers and the clients.The latency of this subnetwork
Dp2p(H) is the diameter ofH , where the diameter
is the longest shortest path and it can be denoted as
Dp2p(H) = max(dc(ci, sci

)+ ds(sci
, scj

)+ dc(cj , scj
)).

In the peer-to-peer model, the servers only act as routers or
the so-called game proxies in [13] [14]. The event synchro-
nizations are done on the clients.

C. Server Selection Problems

We formulateserver selection problems with real-time de-
lay constraint (SPD) for both client-server and peer-to-peer
architectures using the notations from Section II-B. Giventhe
system model and a delay constraintµ, the goal of SPD is to
find an assignmentA such that the number of servers used is
minimal, and

a. Client-Server (SPD-CS): the latency of the treeT rooted
at r induced by the assignmentA is Dcs(Tr) ≤ µ.

b. Peer-to-Peer (SPD-P2P): the latency of the subgraphH

induced by the assignmentA: Dp2p(H) ≤ µ.
This class of problems is proven to beNP-hard by the

reduction from theset-covering problem [10].

III. A LGORITHMS

The goal of SPD is to find an assignment such that the
delay is less than a realtime delay constraintµ whose value
µ depends on the type of the game. Additionally, we also
would like that the number of servers involved is small. We
first present a polynomial-time algorithm (Algorithm 1) for
the SPD-CS problem. For a given server network topology,
this algorithm will give the minimum latency (Γ) that can be
achieved without any consideration to the number of servers
involved. Next we present a heuristic algorithm (Algorithm2)
for the SPD-CS taking into account the latency constraintµ

(≥ Γ). Algorithm 2 attempts to reduce the number of servers
used while satisfying theµ. We extend Algorithm 2 to provide
a solution to the SPD-P2P (Algorithm 3). All our algorithms
run in polynomial-time.

A. SSP with Real-Time Delay Constraint for Client-Server
Architecture (SPD-CS)

Our idea behind finding the minimum latencyΓ for the
SPD-CS problem is as follows. For each nodesi ∈ S, we

build a shortest path tree rooted atr = si. Then we assign
each clientci to a serversj such thatdc(ci, sj) + ds(sj , r)
is minimum. After all the clients are assigned as above, we
can now calculate the latency of the tree rooted atsi. After
constructing all possible trees with eachsi as the root and the
assignment of clients as above, we choose the tree with the
minimum latency (Γ). We can construct all-pairs shortest path
in O(n3) time wheren is the number of servers. Considering
each serversi as the root, we need to find the assignment
for each of them clients. For a single rootsi the total-time
to complete this operation will beO(nm). Since we haven
trees to be considered we have a time-complexity ofO(n2m).
Hence the total complexity of Algorithm 1 isO(n2m) with
m > n.

Input : G = (S, E, w), C, S

Output : treeT , root r, assignmentA, latencyd

Run Floyd-Warshall algorithm onG;1

r = NULL, d = ∞, A = φ;2

foreach si ∈ S do3

dmax = 0;4

foreach cj ∈ C do5

du = ∞;6

foreach sk ∈ S do7

if du > dc(cj , sk) + ds(sk, si) then8

Assign cj to sk;9

du = dc(cj , sk) + ds(sk, si);10

end11

end12

if dmax < du then13

dmax = du;14

end15

end16

if d > dmax then17

r = si, d = dmax;18

Make current assignmentA;19

end20

end21

Construct treeT from r andA;22

return T , r, Γ, d23

Algorithm 1 : Exact Algorithm for SPD-CS

Our Algorithm 2 is a greedy heuristic that tries to solve
the the SPD-CS problem by keeping the number of servers
selected to a minimal. The algorithm first starts with a single
server sayr. Now the treeT consists of a single noder. It
assigns a set of clients to this treeT as along as the delay
constraints is not violated. If all the clients are assignedto the
nodes inT , then we are done. Otherwise, we will choose a
servers that is a neighbor ofT (a neighbor to some node in
the tree) such that servers can serve as a contact server for a
maximum number of unassigned clients without violating the
µ constraint. Now the nodes is added to the treeT . The above
process continues until all clients are assigned. The complexity
of Algorithm 2 is O(n2m) with m > n. The number of
servers involved is no more than in Algorithm 1 if we set

delay constraint as the latency from Algorithm 1 (Γ).

Input : G = (S, E, w), C, B and delay boundµ
Output : rooted treeT , root r, assignmentA, latencyd

Run Floyd-Warshall algorithm onG;1

r = NULL, d = ∞;2

foreach si ∈ S do3

dmax = 0, not done = false, found = true,4

s = NULL;
foreach cj ∈ C do5

if dc(cj , si) < µ then6

Assigncj to si and updatedmax;7

else8

not done = true, found = false;9

end10

end11

Mark si as used;12

while not done do13

s = NULL, nmax = 0;14

S′ = neighbors of current used servers;15

foreach tj ∈ S′ do16

ncurr = # of clients could be assigned tosj ;17

if ncurr > nmax then18

s = sj , nmax = ncurr;19

end20

end21

foreach unassigned client cj ∈ U do22

if dc(cj , s) + ds(s, si) < µ then23

Assign cj to s and updatedmax;24

end25

end26

if no unsigned clients then27

found = true, not done = false;28

end29

end30

if found then31

if d > dmax then32

Make current assignmentA and updatedmax;33

r = si;34

end35

end36

end37

Construct the treeT from r andA;38

return T , r, A, dmax39

Algorithm 2 : Greedy Algorithm for SPD-CS

B. SSP with Real-Time Delay Constraint for Peer-to-Peer
Architecture (SPD-P2P)

We will show that the desired peer-to-peer architecture can
be constructed using the tree constructed in Algorithm 1 or
2.

Suppose we have a solution (assignment)A with root S for
anSPD-CS problem with the delay boundµ, let s1 6= s2 be any
two contact servers inA andc1 6= c2 be two clients assigned to
s1, s2. Thendc(c1, s1)+ds(s1, s)+dc(c2, s2)+ds(s2, s) ≤ µ.

If the communication is done in a peer-to-peer fashion, then
d(c1, c2) = dc(c1, s1)+ ds(s1, s2)+ dc(c2, s2). There are two
cases,(a) s lies on one of the shortest path betweens1 and
s2 or (b) not. In the case of (a),dc(c1, s1) + ds(s1, s2) +
ds(c2, s2) = dc(c1, s1) + dc(s1, s) + dc(c2, s2) + ds(s2, s) ≤
µ. In the case of (b),dc(c1, s1) + ds(s1, s2) + dc(c2, s2) <

dc(c1, s1) + ds(s1, s) + dc(c2, s2) + ds(s2, s) ≤ µ. Then a
SPD-CS solution could be used forSPD-P2P with the delay
boundµ.

Based on this, we can convert the tree constructed by Al-
gorithm 1 or 2 to a network for peer-to-peer communication.
The delay of such subnetwork is bound by the delay of the
tree constructed from Algorithm 1 or 2.

S

S

C1
C2

S21

Fig. 3. Observation from an SPD-CS solution

The subnetwork construction is shown in Algorithm 3 and
the idea follows. First we use Algorithm 2 to find an assign-
ment as the solution to the SPD-P2P problem. Then for each
pair of contact serverssi, sj , the intermediate servers between
their shortest path are added to the solution. Algorithm 2 is
max(O(n3), O(n2m)). Adding intermediate servers can be
done in O(n3) time if we use the all-pair shortest paths
constructed earlier. The overall complexity of this algorithm
is O(n2m) with m > n.

Input : G = (S, E, w), C, B, delay boundµ
Output : networkH , assignmentA and latencyd
(T, A, r, d) = Algorithm 2 (G, C, B, µ);1

S′ = the list of used servers inA;2

H = φ;3

d = 0;4

foreach si ∈ S′ do5

foreach sj 6= si ∈ S′ do6

Add si andsj to H ;7

Add all the servers and the edges on the shortest8

path between thesi andsj to H ;
end9

end10

Update the latencyd;11

return H , A, d12

Algorithm 3 : SPD-P2P Algorithm from Algorithm 2

The ZIZO algorithm in [10] which attempts to allocate the
clients to the nearest servers and migrates them toward the
core servers∗ (that minimizes the longest shortest distance to
all the clients) to reduce the number of servers used. Example
shown in Fig 4 illustrates the existence of an assignment with
the delay boundµ = 16. However the ZIZO fails to find a
solution in this example forµ = 18. The initial assignment
gives the minimal delay of19 and the ZIZO algorithm stops.
Our algorithms will find the solution with delay bound18.

6

A
4

13

17

4

14

12

16

(a) (b)

B

C

1 2

3

4

7

5

6

B

C

1 2

3

4

7

5

Fig. 4. (a) An example shows that ZIZO fails to find a solution with µ = 18
where A, B, C are servers and 1, 2, 3 are clients. (b) A shortestpath tree
rooted at C has the depth of 9 which gives the delay boundµ = 18.

IV. PERFORMANCEEVALUATION

We designed several experiments to evaluate the perfor-
mance of the server selection algorithms. First we randomly
generated a set of networks with20, 25 and 30 servers and
the numbers of clients30, 50, 80, 100 and 120. For each
combination of the number of servers and clients,30 different
networks are generated randomly with a total of 465 different
networks. Then we reduce the latencies on the network of
servers by30% to represent the well-provisioned network. All
graphs shown in this paper are for networks with 25 servers.
The graphs for other networks are similar and removed due to
the space limitation.

A. Delay Bounds

Most of the algorithms take a parameterd which is the
desired delay bound for the assignments. As we mentioned
earlier, the values of delay bound depend on the type of the
game. However, the values must be achievable for a given
network and Algorithm 1 is used to find this valueΓ. Then
we multiply Γ with a factorf(≥ 1.0) as the delay bound. We
choose1.0, 1.1, 1.2, 1.3, 1.4 and1.5 as the values off in our
experiments.

B. General Experiment Method

We evaluate the performance of the algorithms based on
latency and number of servers involved. The procedure we
used to evaluate the algorithms follows. For each different
input (netowk), Algorithm 1 is used to find the value ofΓ.
Note thatΓ depends on the graph and hence its values are
virtually unique among graphs. AfterΓ for a graph is found,
different algorithms are used to find the assignments on this
graph. This step is repeated with different delay bounds (µ)
which are described earlier.

C. Evaluation of SPD-CS Algorithms

We compared the results from different algorithms for SPD-
CS problems and following are the details of these algorithms.

• Algorithm 1: exact algorithm used to find the minimal
latency (Γ) without considering the number of servers
involved.

• Algorithm 2: our heuristic algorithm which gives a solu-
tion within the delay bound (µ) using minimal number
of servers.

• k-best: This algorithm is used to evaluate the goodness
of Algorithm 2. Suppose Algorithm 2 utilizes k servers,
we search all the possible connected subgraphs with size
k and run Algorithm 1 to find the least latency.

TABLE I
ALGORITHMS COMPARED INSPD-CSEXPERIMENT

Notation Algorithm Complexity
alg-1 Algorithm 1 O(n2m)
alg-2 Algorithm 2 O(n2m)
k-Best Based on k servers O(nk · n2m)

&Algorithm 1

0 50 100 150
0

1000

2000

3000

4000

of Clients

La
te

nc
y

(U
ni

ts
 o

f T
im

e)

11.03

3.97

3.97

13.67

5.20

5.20

15.50

6.27

6.27

16.33

6.23

6.23
16.70

6.07

6.07

alg−1
alg−2
k−Best

Fig. 5. Latencies on different algorithms for 25 servers,f = 1.3. The figure
also shows the average number of servers used in the solution.

The algorithms are summarized in Table I and the results are
shown in Fig. 5 and 6. The results show that all the algorithms
are able to find solutions within given delay bound in different
cases. We also can see that Algorithm 2 uses less number of
servers in the assignments in comparison with Algorithm 1.
We also found that as the delay bound increases, the number
of servers used decreases (Fig. 6).

D. Evaluation of SPD-P2P Algorithms

We use a similar method and the same input to evaluate
SPD-P2P algorithms. The algorithms compared are listed
below.

• Algorithm 1: This algorithm is used in a client-server
manner.

• Algorithm 3: Our heuristic algorithm based on Algo-
rithm 2.

• ZIZO: Zoom-in Zoom-out algorithm from [10].
• k-best: This algorithm is similar to the SPD-CS case but

Algorithm 3 is used instead of 2.

These algorithms are summarized in Table II and the results
are shown in Fig. 7 and Fig. 8. The results show that
our heuristic algorithm could find solutions that satisfy the
delay bound (Fig. 7) given by Algorithm 1. But occasionally,
ZIZO will not find a solution as we discussed earlier. In the
comparison of number of servers,k-Best gives best results
(fewest number of servers) whileZIZO is the worst (similar to
alg-1(CS)). Algorithm 3 falls approximately half way between
these two algorithms (Fig. 8).

TABLE II
ALGORITHMS COMPARED INSPD-P2PEXPERIMENT

Notation Algorithm Complexity
alg-1 Algorithm 1 O(n2m)
alg-3 Algorithm 3 O(n2m)
ZIZO Zoom-in Zoom-out O(nm3)
k-Best Based on k servers O(nk · n2m)

& Algorithm 3

0 50 100 150
0

5

10

15

20

25

of Clients

of

 S
er

ve
rs

 U
se

d

alg−1
alg−2, f=1.0
alg−2, f=1.1
alg−2, f=1.2
alg−2, f=1.3
alg−2, f=1.4
alg−2, f=1.5

Fig. 6. Comparison on number of servers used(25 servers,f = 1.3).

0 50 100 150
0

2000

4000

6000

8000

of Clients

La
te

nc
y(

U
ni

ts
 o

f T
im

e)

11.03

4.77
2.70
12.53

13.67

6.77
3.23
14.33

15.50

9.83
3.60
15.23

16.33

9.47
4.03
15.77

16.70

9.43
3.97
15.43

alg−1(CS)
alg−3
k−Best
ZIZO

Fig. 7. Latencies on different algorithms for 25 servers,f = 1.3. The figure
also shows the average number of servers used in the solution

V. CONCLUSIONS

Online game user experience could be improved by reducing
the latencies between the users and the servers. By buildinga
network of geographically distributed servers and connecting
the servers by using high-speed low-latency links, the goal
could be achieved. We designed and evaluated algorithms
to minimize the number of servers used without violating
delay bound for a single game session. The results show
that our heuristic algorithms perform well. Although we use
multiplayer online games as an example in this research,
the applications are not limited to multiplayer online games.
For example, networked collaborative applications such as
audio/video conferences could benefit from proper server as-
signments. Even without using the well-provisioned network,
server selection algorithms could help on finding better ways
for routing for overlay networks.

In practice, these algorithms could be easily implemented
since the distances matrices for the servers could be pre-
calculated and this only needs to be done once. Measuring the
latencies between each client-server pair could be challenging.
Another issue needs to be considered is the change of group
membership. Our next research topic is to do server selection
for multiple groups and load balancing. We also plan to have
real-world experiments on PlanetLab [16] to evaluate our
algorithms.

REFERENCES

[1] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “An empirical evalua-
tion of tcp performance in online games,” inACE ’06: Proceedings of the
2006 ACM SIGCHI international conference on Advances in computer
entertainment technology. New York, NY, USA: ACM, 2006, p. 5.

[2] K.-T. Chen, P. Huang, and C.-L. Lei, “Effect of network quality on player
departure behavior in online games,”IEEE Trans. Parallel Distrib. Syst.,
vol. 20, no. 5, pp. 593–606, 2009.

0 50 100 150
0

5

10

15

20

of Clients

of

 S
er

ve
rs

 U
se

d

alg−1(CS)
alg−3
k−Best
ZIZO

Fig. 8. Number of used servers on different algorithms(f = 1.3)

[3] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game
server system,” inUniversity of Michigan, 2001, p. 01.

[4] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin, “An efficient synchro-
nization mechanism for mirrored game architectures,”Multimedia Tools
Appl., vol. 23, no. 1, pp. 7–30, 2004.

[5] S. Ferretti, “A synchronization protocol for supporting peer-to-peer mul-
tiplayer online games in overlay networks,” inDEBS ’08: Proceedings of
the second international conference on Distributed event-based systems.
New York, NY, USA: ACM, 2008, pp. 83–94.

[6] S. Ferretti and M. Roccetti, “Fast delivery of game events with an
optimistic synchronization mechanism in massive multiplayer online
games,” inACE ’05: Proceedings of the 2005 ACM SIGCHI Interna-
tional Conference on Advances in computer entertainment technology.
New York, NY, USA: ACM, 2005, pp. 405–412.

[7] F. Glinka, A. Ploss, S. Gorlatch, and J. Müller-Iden, “High-level devel-
opment of multiserver online games,”Int. J. Comput. Games Technol.,
vol. 2008, pp. 1–16, 2008.

[8] N. Harvey, R. Ladner, L. Lovász, and T. Tamir, “Semi-matchings for
bipartite graphs and load balancing,” inProc. 8th WADS, 2003, pp.
294–306.

[9] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: a scalable peer-to-peer
network for virtual environments,”Network, IEEE, vol. 20, no. 4, pp.
22–31, August 2006.

[10] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selection for large
scale interactive online games,” inNOSSDAV ’04: Proceedings of the
14th international workshop on Network and operating systems support
for digital audio and video. New York, NY, USA: ACM, 2004, pp.
152–157.

[11] E. Léty, T. Turletti, and F. Baccelli, “Score: a scalable communication
protocol for large-scale virtual environments,”IEEE/ACM Trans. Netw.,
vol. 12, no. 2, pp. 247–260, 2004.

[12] C. P. Low, “An approximation algorithm for the load-balanced semi-
matching problem in weighted bipartite graphs,”Inf. Process. Lett., vol.
100, no. 4, pp. 154–161, 2006.

[13] M. Mauve, S. Fischer, and J. Widmer, “A generic proxy system for
networked computer games,” inNetGames ’02: Proceedings of the 1st
workshop on Network and system support for games. New York, NY,
USA: ACM, 2002, pp. 25–28.

[14] J. Mller, S. Fischer, S. Gorlatch, and M. Mauve, “A ProxyServer-
Network for Real-time Computer Games,” inIn Proc. of Euro-Par 2004,
Aug. 2004.

[15] C. Nguyen, F. Safaei, and P. Boustead, “A distributed server architecture
for providing immersive audio communication to massively multiplayer
online games,” inNetworks, 2004. (ICON 2004). Proceedings. 12th
IEEE International Conference on, vol. 1, 16-19 2004, pp. 170 – 176
vol.1.

[16] Planetlab. [Online]. Available: https://www.planet-lab.org:443/
[17] Quake 4. [Online]. Available: http://www.quake4game.com/
[18] Starcraft. [Online]. Available: http://www.blizzard.com/us/starcraft/
[19] P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis andmodeling

for world of warcraft,” in Communications, 2007. ICC ’07. IEEE
International Conference on, 2007, pp. 1612–1617.

[20] S. D. Webb and S. Soh, “Adaptive client to mirrored-server assignment
for massively multiplayer online games,” inSociety of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, ser. Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
6818, Jan. 2008.

[21] World of warcraft. [Online]. Available: http://www.worldofwarcraft.com

