
On Multi-stream Multi-source Multicast Routing

Yuh-Rong Chen, Sridhar Radhakrishnan, Sudarshan K. Dhall

School of Computer Science

The University of Oklahoma

{yrchern, sridhar, sdhall}@ou.edu

Suleyman Karabuk

School of Industrial Engineering

The University of Oklahoma

karabuk@ou.edu

Abstract—Multicasting is an efficient way to deliver multime-
dia content (streaming, for instance) to different locations in the
network. While end-to-end real-time constraints are important
for interactive applications, sustained availability of bandwidth
is more important to the destinations for multimedia streaming.
In this research, we address the problem of multi-stream multi-
source multicast routing problem (MMMRP) where each data
stream could have multiple sources that will serve it and each
source can serve multiple data streams in a sustained manner.
The goal of MMMRP is to construct a routing forest for each
of the data streams and the destinations while maximizing the
residual bandwidth. The residual bandwidth is the available
bandwidth after all destinations have been served with their
desired streams. Our problem is shown to be NP-hard and we
provide an Integer Programming formulation together with an
efficient heuristic algorithm (MMForests) based on widest-path
algorithm. Our empirical evaluations show that our algorithm
MMForests can construct the multicast routing trees both quickly
and keeping the residual bandwidth close to the optimal.

I. INTRODUCTION

Multicasting is an efficient way to deliver the multime-

dia contents or large files from a single source to multiple

destinations. Multicasting can be performed at the network

layer taking into account the Internet routers that support

Internet Group Management Protocol (IGMP) in IPv4or Mul-

ticast Listener Discovery (MLD) in IPv6. Application layer

multicasting [4], [6], [13], [15] is done by the end-hosts that

form the nodes of the overlay network. The links of the overlay

network are paths formed by Internet routers. Application

layer multicasting is very flexible in the sense that newer

protocols can be easily incorporated at the end-hosts, but are

less efficient because the multicasting paths may sometimes

involve overlapping Internet paths [8]. Multicast backbone

(Mbone) [7] uses IP tunneling to connect multicast islands

and allow end users to access it.

There has been a plethora of research activity dealing with

the construction of multicasting trees that satisfies various

constraints. For example, the problem of constructing a single

source serving a single multimedia stream wherein minimum

delay is desired can be solved efficiently by constructing a

single source shortest path tree and pruning subtrees that do

not have a destination node. In cases where the delay bound,

delay variation bound, node degree bound, and others are

desired the multicasting tree constructions problems have been

shown to be NP-hard [1], [15].

There has been a growing interest in building multiple

multicast trees. Castro et al. developed SplitStream [4] where

they split the source stream into k stripes and multicast

them using disjoint multicast trees, i.e, the trees do not share

common interior nodes. The participants then obtain each

stripe from different trees. S. Birrer et al. [2] address the

issue of bandwidth being the bottleneck as we move closer to

the root. They do this by building fat-trees for multicasting,

wherein the outgoing links near the root have higher bandwidth

compare to links that are further away from the root.

While it is possible to solve the problem by combining the

multicast trees by solving each subproblems individually, the

result might not be optimal. For example, say we have a source

s and a destination t and there are two video streams needed

to be sent from s to t and each consume 1 unit of bandwidth.

If we solve the problem for each of the streams individually,

we may get two edge-joint paths which consume 2 units of the

bandwidth on the common edges. The optimal solution could

be two edge-disjoint paths from s to t which results in 1 unit

of the bandwidth usage.

Ravindran et al. [14] developed a model and provided

heuristics for the problem of merging two or more trees to

save operational cost, in terms of network usage or bandwidth

consumption. Kar et al. [11] presented an online algorithm to

address the problem of finding minimum interference routing

between pairs of sources and destinations. Figueiredo et al.

later developed an algorithm [9] with improved computation

time. Note that the case of multiple destinations for the same

source was not considered in [9], [11]. Chen et al. [5] and Lee

and Cho [12] developed IP models together with heuristics

to merge multicasting trees such that the minimum residual

bandwidth (which is the bandwidth of link that is unused)

is maximized. The main difference in the problem addressed

in this paper and the work in [5], [12] is that our work

also considers the case in which a multimedia stream could

be served by more than one source. Additionally, we have

provided a polynomial-time heuristic which is able to obtain

maximum minimum residual bandwidth that is close to the

optimal. Algorithms in [5], [12] have to construct a Steiner tree

at each iteration, thereby incurring an expensive computation

and in comparison our algorithm employs a simply widest path

computation.

The rest of this paper is organized as follows. In Section II,

we introduce the notations and define MMMRP, show its NP-

hardness. An integer programming (IP) formulation is then

provided in Section III and the heuristic algorithm based on

widest path algorithm is presented inSection IV. Performance

Globecom 2012 - Communications Software, Services and Multimedia Symposium

978-1-4673-0921-9/12/$31.00 ©2012 IEEE 1950

evaluation and results are presented in Section V with conclu-

sions drawn in Section VI.

II. PROBLEM DEFINITION

In this section, we introduce the notations for Multi-stream

Multi-source Multicast Routing Problem (MMMRP) and then

define and model the problem.

A. Notations

Let G = (V,E) be an undirected graph representing the

communication network, where V = {v1, v2, · · · vm} is the

set of nodes and E = {e1, e2, · · · en} is the set of the

communication links. Let C = {c1, c2, · · · cn} where cj is the

bandwidth of edge ej . When necessary, we use G = (V,E,C)
to denote the network with bandwidth information. We use Ai

to denote the set of neighbor(s) of node vi in G and assume

each vi has the capability to multicast to its neighbors.

Assume there are data streams supplied and requested by

some of the nodes in V and let W = {w1, w2, · · ·wl} be the

set of distinct data streams. We use bk to denote the bandwidth

requirement of wk. Let S = {s1, s2, · · · sp} ⊆ V be the set

of source nodes that supply the data streams and each si is

the source of the data stream subset W̄i ⊆ W . We call these

nodes source nodes or simply sources in the paper. We also

assume that a data stream wk can be provided by more than

1 nodes in S. Similarly, we use D = {d1, d2 · · · dq} ⊆ V for

the set of nodes that requests some data streams, and each dj
requests data stream subset Ŵj ⊆ W . We call these nodes

destination nodes or simply destinations.

For the convenience of description, we use Sk to denote the

set of source nodes that can supply data stream wk and Dk

for the set of nodes that demands data stream wk. |Sk|, |Dk|
are the cardinality (the size of the set) of Sk, Dk, respectively.

Without loss of generality, we assume that:

• The links have the same bandwidth.

• A source node does not demand the data stream it

supplies, it can be pruned during the preprocessing in

this case it does.

• Each stream consume the same unit bandwidth.

The goal of MMMRP is to find a way to deliver the data

streams to their destinations using multicast while the mini-

mum residual bandwidth among the links is maximized. When

the links are homogenous, this is equivalent to minimizing the

maximum bandwidth consumption among the links. Clearly, a

loose upper bound for the maximum bandwidth consumption

is |W | = l and a loose lower bound is max⌈ |W̄i|+|Ŵi|
deg(vi)

⌉, ∀ vi ∈
V where deg(vi) is the degree of vi in G.

B. Problem Variations

There are special cases of MMMRP which have been

studied, here we summarize these problems with MMMRP

and a generalized version of MMMRP.

1. A single stream with a single source, which is similar

to previous researches modeled as Steiner tree problems

in [3], [15]. However, we only concern the maximum

bandwidth consumption among the links, it can be solved

within polynomial time using any spanning tree algorithm

with pruning.

2. Multiple streams with a single source: This is similar

to the problem addressed by SplitStream [4] and can be

considered as a special case of 3.

3. Multiple streams with a single sources for each stream:

This is addressed in [2], [14] where the total cost of the

tree is considered.

4. A single stream with multiple sources: In this case, a tree

with one or more nodes will be constructed from each of

the source nodes and each destination must be in one of

the trees. We can transform this problem to 1 by add a

dummy node connecting all the source nodes.

5. MMMRP: This is the problem we are addressing in this

research, which cover all the previous cases.

C. Multi-stream Multi-source Multicast Routing Problem

We consider the case where there are multiple streams

{w1, w2, · · ·wl}. Each of the streams wk can be supplied by a

set of sources Sk and has its destination set Dk. The goal is to

find the multicast trees for each of the data streams (and their

sources) such that all the destinations are part of the multicast

tree of the stream they request while the maximum bandwidth

usage among the links is minimizes. A more generalized

version of the problem GMMMRP is as follows.

Given a network G = (V,E,C), set of data streams W with

each wk consumes bk of bandwidth and supplied by Sk ⊂ V ,

requested by Dk ⊂ V . Assume the nodes have the ability to

multicast data to its neighbors. The objective of the problem

is to find a way to deliver the data streams from some of the

sources to their destinations along the links using multicast

such that the minimum residue bandwidth is minimized.

D. NP-Hardness

Given a set of source-destination pairs, the minimum in-

terference paths (MIP) problems seeks to find the paths for

each pair such that the minimum available capacity among

the links is a maximum. Finding such paths has been shown

to be NP-hard by Kar et al. [11]. Now, consider a special

case of MMMRP with each source serving a unique stream to

a single destination, which is equivalent to the MIP problem.

Hence MMMRP is also NP-hard. Furthermore, the network

flow techniques that used to find heuristic solutions for MIP

problems in Kar et al. [11] cannot be applied to MMMRP

as MMMRP requires multicasting as explained in the coming

section.

III. INTEGER PROGRAMMING FORMULATION

One of the important properties of the classic transshipment

problems or network flow problems is the total supply equals

the total demand for the nodes.However, a data packet can be

duplicated at any intermediate nodes using multicasting. Hence

the LP models for solving classic network problems can not

be used directly to solve MMMRP. Here we will treat the

problem as a network flow problem, but add some additional

decision variables and constraints to incorporate multicasting

1951

in this problem. The following decision variables are defined

to be used in the model.

• Xijk: non-negative integer variables that represent the

total number of wk’s flow from the edge (vi, vj) when

treated as a network flow problem.

• Fijk: binary variables that take the value 1 if Xijk is

positive, 0 when Xijk is 0. This also represents if wk

flows through the edge vi to vj in MMMRP.

• Z: A non-negative integer variable for measuring the

maximum number of distinct data streams (Fijk) flow

through any of the links, which is also the objective.

We define a constant c which is an integer greater than or

equal to max |Dk| ∀ wk ∈ W . The model is shown below.

Model MMMRP

Minimize Z
Subject to:

∑

vi∈Sk

∑

vj∈Ai

Xijk = |Dk| ∀ wk ∈ W (1)

∑

vj∈Ai

Xjik =
∑

vj∈Ai

Xijk + 1 ∀ wk ∈ W, vi ∈ Dk (2)

∑

vj∈Ai

Xijk =
∑

vj∈Ai

Xjik ∀ wk ∈ W, vi ∈ V,

vi /∈ Sk, vi /∈ Dk (3)

Xijk ≤ cFijk ∀ wk ∈ W,

vi ∈ V, vj ∈ Ai (4)
∑

vj∈Ai

Fjik = 0 ∀ wk ∈ W, vi ∈ Sk (5)

∑

vj∈Ai

Fjik ≤ 1 ∀ wk ∈ W

vi ∈ V, vi /∈ Sk (6)
∑

wk∈W

(Fijk + Fjik) ≤ Z ∀ (vi, vj) ∈ E (7)

The objective function Z measures the maximum bandwidth

usage among the links. Constraints (1) to (3) are as used in

the classic network flow problems. Constraints (1) ensure the

copies a data stream dk sent out by its source nodes equal the

number of requests. On the other hand, Constraints (2) enforce

the copies of incoming data stream dk is exactly 1 more than of

outgoing at a node that demands dk. Constraints (3) assures

for each intermediate node vi, the number of outgoing and

incoming copies of dk are the same. Constraints (4) is used to

determine if a data stream dk flows from vi to vj . If there is at

least one copy of dk flows from vi to vj , Fijk is set to 1 by this

constraint, it could be 0 or 1 otherwise. We use constraints (5)

and (6) to remove the cycles based on the following two

observations: (i) there should not be any incoming data stream

wk from any neighbor of vi if vi ∈ Sk (Constraints (5))and

(ii) there should be at most 1 neighbor of vi supplying data

stream wk to vi if vi /∈ S (Constraints (6)). Constraints (7)

to measure the maximum bandwidth usage on each link using

Z.

IV. ALGORITHM MMFORESTS

We present a heuristic algorithm MMforests based on

widest-path algorithm for MMMRP in Algorithm 1. The idea

of MMforests is as follows.

Input: G = (V,E), data stream set W , sources and

destinations of each stream wk: {Sk}, {Dk}.

Output: Set of multicast forests F
1 F = φ;

2 Set the capacity {cj} of each ej ∈ E to l (|W | = l) ;

3 C = {cj};

4 G′ = (V,E,C);
5 Forest f1 = DijkstraForest(G′, S1, D1);
6 foreach ej ∈ f1 do

7 cj = cj − 1;

8 end

9 foreach wi ∈ W − {w1} do

10 Forest fi = WPForest(G′, Si, Di);
11 foreach ej ∈ fi do

12 cj = cj − 1;

13 end

14 end

15 F = {fi};

16 return F
Algorithm 1: MMForests Algorithm

First, we set the capacity cj of each communication link

ej to |W | (the number of data streams), which is the loosen

upper bound (line 2). Then for each of the data streams wi, we

construct a multicast forest fi that spans the destination set Di

(line 5, 10) and each tree is rooted at one of the source node

in Si. The trees in fi do not have nodes or edges in common.

Then we update the residue bandwidth by subtracting 1 from

cj if ej is in fi, repeat this until all data streams are processed

(line 6 - 8, 11 - 13).

Each multicast forests is constructed using Widest-Path

Forest Algorithm (Algorithm 2) which is based on widest-

path algorithm (a modified version of Dijkstra’s algorithm)

except the original Dijkstra’s algorithm is used for the first

data stream. We omitted the algorithm based on the original

Dijkstra’s algorithm because it is similar to Algorithm 2, which

works as follows.

We first construct the single source widest paths for each of

the sources (line 2 - 4). Then we find the path from each of

the destinations to one of the sources (line 5 - 22) as follows.

For each of the destinations dj , we set dj as the current node.

There will be a “widest-path” from the current node to each

of the sources. We choose the widest one among the ”widest

paths” and find the next node on the path (line 8 - 15). Then

we add the edge from current node to next node to the f and

set the next node as the current node (line 16, 17). We will

repeat this procedure until one of the sources is reached then

continue for next dj . The resulting graph will be a forest where

each tree is rooted at one of the source node and there’s no

overlapping of nodes or edges among the trees.
The reason that we do not directly construct a path from

each dj to one of the sources but instead of building the path

step by step can be explained using Figure 1. Suppose we

are constructing the widest path from d to one of the source

nodes (S, T). We will choose the one that is wider (say to S)

1952

Input: G = (V,E,C), S = {s1, s2 · · · },

D = {d1, d2 · · · }.

Output: Multicast forest f
1 f = φ;

2 foreach source si ∈ S do

3 Tree ti = WidestPathTree(G, si);
4 end

5 foreach dj ∈ D do

6 current node = dj ;

7 while true do

8 next node = next node on the widest path from

current node to s1 in t1 ;

9 next width = the bottleneck bandwidth from

current node to s1 in t1;

10 foreach si ∈ S − {s1} do

11 if the bottleneck bandwidth from dj to si in

t1 > next width then

12 next node = next node on the widest

path from dj to si in ti ;

13 next width = the bottleneck bandwidth

from dj to si in ti;
14 end

15 end

16 Add (current node, next node) to f ;

17 currentnode = nextnode;

18 if next node ∈ S then

19 break;

20 end

21 end

22 end

23 return f
Algorithm 2: Widest-Path Forest (WPForest) Algorithm

and determine the next node on the path which is v in the

example. If we keep going from v to S all the way, we may

miss some ”wider” paths if (d, v) is the bottleneck. In this

case, two paths d → v → · · · → S and d → v → · · · → T
have the same residue capacities. But our goal is try to use

the link with higher capacities, and hence we need to make

decision again at each node and so on.

Rest of the NetworkT

S

v

d

?

?

Fig. 1: Widest Path Selection.

Complexity of MMForests

First we consider the complexity of WPForest. The com-

plexity of Dijkstra’s algorithm is O(n + m logm), where n
is the number of edges and m is the number of nodes. The

loop from line 5 to 22 is O(n · |Dk||Sk|) for data stream wk,

hence the overall complexity is max(O(n +m logm), O(n ·

|Dk||Sk|)). WPForest is called l (total number of data streams)

times in MMForests and hence the overall complexity of

MMForests is O(n · l · |D∗| · |S∗|) when n > m and

|D∗| = max |Dk|, |S∗| = max |Sk|, ∀ 1 ≤ k ≤ l),

V. PERFORMANCE EVALUATION

We generate 30 random instances for each different configu-

ration using the parameters in TABLE I with the average node

degree of 3. We assume a homogenous network, in which each

source node supplies the same number of data streams, each

destination node requests the same number of data streams and

each data stream is supplied by the same number of source

nodes. For simplicity, we assume that a node can be either a

source node or a destination node but not both.

TABLE I: Parameter Used in Instance Generating

Name Description

N Number of nodes
NS Number of source nodes

NS

W
Number of data streams supplied by a source node

ND Number of destination nodes

ND

W
Number of data streams requested by a destination node

NW Number of data streams

NW

S
Number of source nodes that supply a data stream

(NW

S
= NS ·NS

W
/N)

We evaluate the impact of different parameters and compare

the performance of Model MMMRP with our heuristic MM-

Forests. MMForests and Model MMMRP are implemented in

C++ with Gurobi Optimizer [10] (version 4.6) C++ Library

for the IP model. The workstation used in the experiments is

an Intel Xeon (E5520 at 2.27 GHz) machine with 12 GB of

RAM running Linux kernel 3.0.0-16. Multithreading (16) is

used when possible for parallel barrier in Gurobi optimizer,

MMForests algorithm only uses a single thread. Note that

finding an optimal solution using the IP model may take a long

period of time (hours to days) for large instances, Hence we

limit the running time of the solver to 180 seconds and obtain

best known solution (IP180) and best available lower bound on

solution (BestLB). BestLB is obtained from the solver during

solving the IP model. If the gap between IP180 and BestLB

is small, IP180 is close to optimal. This gives us an idea

about the optimal solution and allow us to compare it with

our heuristic. We compare (a) maximum bandwidth usage (in

terms of number of data streams) among the links and (b)

execution time for both approaches in the experiments. The

result figures show the average of 30 instances of each network

configuration. Note that in the results of execution time, the

unit for IP180 is in seconds and MMForests is in milliseconds.

A. Size of the Network (N)

For network size (N) from 100 to 500 and keep other

parameters the same (NS = 10, ND = 40, NS
W = 8, ND

W =
20, NW

S = 2), We omitted the figure here due to space

limitation. The results show that IP180 and BestLB are very

close which implies IP180 is close to optimal. The solution

from MMForest is a little more than IP180 but with very

short running time (≤ 150ms) comparing to 100+ seconds

1953

0 1 2 3 4 5
0

5

10

15

20

25

Number of Source Nodes per Data Stream

M
a

x
im

u
m

 B
a

n
d

w
id

th
 U

s
a

g
e

IP180

BestLB

WPForests

(a)

0 1 2 3 4 5
0

50

100

150

200

Number of Source Nodes per Data Stream

A
lg

o
ri
th

m
 E

x
e

c
u

ti
o

n
 T

im
e

IP180 (seconds)

WPForests (milliseconds)

(b)

Fig. 2: Impact of the number of sources per data stream. (a) Maximum bandwidth usage among links. (b) Execution time.

0 50 100 150 200 250
0

50

100

150

200

Total Number of Data Streams

M
a

x
im

u
m

 B
a

n
d

w
id

th
 U

s
a

g
e

IP180

BestLB

WPForests

(a)

0 50 100 150 200 250
0

50

100

150

200

Total Number of Data Streams
A

lg
o

ri
th

m
 E

x
e

c
u

ti
o

n
 T

im
e

IP180 (seconds)

WPForests (milliseconds)

(b)

Fig. 3: Impact of the total number of data streams. (a) Maximum bandwidth usage among links. (b) Execution time.

for IP180. One thing that suppress us is that BestLB does not

decrease much as the network size increase, this may imply the

bottleneck in the network is implicitly affected by the average

degree of the nodes.

B. Number of Source Nodes for a Data Stream (NW
S)

We manipulate the number of sources per data stream (NW
S)

while keeping other parameters the same (N = 400, NS =
10, ND = 40, NW = 40, ND

W = 20). Not that NS
W is also

affected by NW
S . NS

W are set to 4, 8, 12, 16 with resulting

NW
S as 1, 2, 3, 4 respectively. The results (Figure 2) shows

the maximum bandwidth usage does not decrease much as

NW
S increases. Our heuristic can quickly find solutions that

are close to optimal.

C. Number of Data Streams (NW)

We experiment the effect of total number of data streams

(NW = 40, 80, 160, 200) and other parameters remain the

same (N = 100, NS = 10, ND = 80, NW = 40, NS
W =

8, ND
W = 20). We find that the solver starts failing to find

a good feasible (and a good BestLB) as the number of

data streams increases. The gaps between the best solution

found and the BestLB value become large, especially for

NW = 160, 200, these information are less meaningful to

us. From Figure 3, we can see that MMForests performs well

when NW = 40 and we also believe that the optimal value also

increases when NW increases. If our assumption holds, we

have confident that MMForests finds good solutions because

the slope Figure 3 is small. Note that in Fig. 3a BestLB

decreases because the solver was not to improve it much (from

0) when problem sizes get larger.

D. Number of Data Streams Requested per Destination

The results of manipulating the number of data streams

request by each of the destinations (ND
W = 20, 40, 60) are

shown in Figure 4. Other parameters are N = 100, NS =
10, ND = 40, NW = 80, NS

W = 16, NW
S = 2. Gurobi uses

more than 150 seconds in average to find good solutions in

all cases while the solutions found by MMForest is comparable

with the solver (Figure 4a).

E. Total Number of Destination Nodes

In the last experiment, we change the number of destination

nodes (ND = 40, 80, 120, 160, 200) and other parameters are

kept the same N = 400, NS = 10, NW = 40, NS
W =

8, ND
W = 20. Model MMMRP hits its limitation for ND =

120, 160, 200 but still can provide some meaningful BestLB

values. Our heuristic algorithm MMForests find good solutions

(by comparing to BestLB’s) by using a little more than 100
milliseconds. The result also shows ND only slightly affects

the execution time of MMForests.

VI. CONCLUSIONS

MMMRP is a generalized version of the problem of

constructing multiple multicasting trees with minimum in-

terference. We have formulated the problem using integer

programming and proposed a heuristic algorithm MMForests

based on widest path algorithm for solving this problem.

Our experimental results show that MMMForests finds good

1954

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Data Streams Requests per Destination

M
a

x
im

u
m

 B
a

n
d

w
id

th
 U

s
a

g
e

IP180

BestLB

WPForests

(a)

0 20 40 60 80
0

50

100

150

200

Data Streams Requests per Destination

A
lg

o
ri
th

m
 E

x
e

c
u

ti
o

n
 T

im
e

IP180 (seconds)

WPForests (milliseconds)

(b)

Fig. 4: Impact of the number of data streams requested per destination. (a) Maximum bandwidth usage among links. (b)

Execution time.

0 50 100 150 200 250
0

10

20

30

40

50

Total Number of Destinations

M
a

x
im

u
m

 B
a

n
d

w
id

th
 U

s
a

g
e

IP180

BestLB

WPForests

(a)

0 50 100 150 200 250
0

50

100

150

200

Total Number of Destinations

A
lg

o
ri
th

m
 E

x
e

c
u

ti
o

n
 T

im
e

IP180 (seconds)

WPForests (milliseconds)

(b)

Fig. 5: Impact of total number destination nodes. (a) Maximum bandwidth usage among links. (b) Execution time.

multicast forests in terms of maximizing residual bandwidths

while being efficient in execution time. The results also show

that the execution time increases significantly in proportion

to the size of the network, number of source nodes per

data stream, and total number of data streams. It does not

increase proportional to the number of data streams request

per destination and total number of destinations. Experimental

results also indicate that the structure of the network (degree

of the nodes) has impact on the optimal objective value

(maximum bandwidth usage among the links). The purpose of

this research is to improve multimedia streaming service. In a

real world situation, the streaming sessions occur in a timed

manner with various bandwidth consumption and the residue

bandwidth should be computed dynamically. An online version

of WPForest needs to be developed to address these issues.

Another issue to be addressed in the future is the overhead of

gathering information necessary for the algorithm.

REFERENCES

[1] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan, “Multicast routing
with delay and delay variation constraints for collaborative applications
on overlay networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3,
pp. 421 – 431, 2007.

[2] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda, “Fatnemo:
Building a resilient multi-source multicast fat-tree,” in In Proc. of IWCW,
2004, pp. 182–196.

[3] E. Brosh, A. Levin, and Y. Shavitt, “Approximation and heuristic algo-
rithms for minimum-delay application-layer multicast trees,” IEEE/ACM

Trans. Netw., vol. 15, pp. 473–484, Apr. 2007.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: high-bandwidth multicast in cooperative
environments,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 298 – 313,
Oct. 2003.

[5] S. Chen, O. Günlük, and B. Yener, “The multicast packing problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 3, pp. 311 – 318, Jun. 2000.

[6] Y.-H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” Selected Areas in Communications, IEEE Journal on, vol. 20,
no. 8, pp. 1456 – 1471, Oct. 2002.

[7] H. Eriksson, “Mbone: the multicast backbone,” Commun. ACM, vol. 37,
pp. 54 – 60, Aug. 1994.

[8] S. Fahmy and M. Kwon, “Characterizing overlay multicast networks
and their costs,” IEEE/ACM Trans. Netw., vol. 15, pp. 373 – 386, Apr.
2007.

[9] G. Figueiredo, N. da Fonseca, and J. Monteiro, “A minimum interfer-
ence routing algorithm,” in Communications, 2004 IEEE International

Conference on, vol. 4, Jun. 2004.
[10] Gurobi Optimizer. http://www.gurobi.com.
[11] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum interference

routing of bandwidth guaranteed tunnels with mpls traffic engineering
applications,” Selected Areas in Communications, IEEE Journal on,
vol. 18, no. 12, pp. 2566 – 2579, Dec. 2000.

[12] C. Y. Lee and H. K. Cho, “Multiple multicast tree allocation in ip
network,” Computer Operations Research, vol. 31, no. 7, pp. 1115 –
1133, Jun. 2004.

[13] Project NICE at the University of Maryland.
http://www.cs.umd.edu/projects/nice/.

[14] K. N. Ravindran, A. Sabbir, D. Loguinov, and G. S. Bloom, “Cost
optimal multicast trees for multi-source data flows,” in INFOCOM, 2001,
pp. 966–975.

[15] K.-H. Vik, P. Halvorsen, and C. Griwodz, “Evaluating steiner tree heuris-
tics and diameter variations for application layer multicast,” Elsevier

Computer Networks, vol. 52, no. 15, pp. 2872 – 2893, 2008, special
issue on Complex Computer and Communication Networks, Elsevier.

1955

